

식품 관련 신종유해물질의 이해

박승우

3상북도 보건환경연구원

신종 유해물질이란?

- 식품의 제조· 가공· 조리과정 중 가열, 건조, 발효과정과 식품에 첨가되는 물질에 의해 식품 성분간의 화학적 반응을 거쳐 자연적으로 생성되는 물질 중 위험성 확인 등의 평가 절차를 통해 확인된 물질
- 이전에는 주목 받지 못하거나 안전한 것으로 평가되었다가 최근에 유해성이 새롭게 입증된 물질

신종유해물질 생성 원인

- 식품을 가열할 때 식품성분이 반응하여 자연적으로 생성 (벤조피렌, 아크릴아마이드)
- 식품첨가물이 식품성분과 반응하여 생성 (벤젠, 3-MCPD, 니트로사민)
- 발효과정을 거치는 식품 중에 자연적으로 생성 (에틸카바메이트, 바이오제닉아민)
- 식품 중에 불법적으로 첨가하는 부정유해물질 (발기부전치료제, 멜라민)

[관련 용어]

- 방사능(Radioactivity) : 불완전한 원소의 원자핵이 보다 안정된 원자핵으로 자발적으로 붕괴하면서 α , β , γ 등의 방사선을 방출하는 능력
- 방사성물질(Radioactive material) : 방사능을 지니고 있는 물질 (원자번호가 큰 우라늄, 라듐 등 40여종, 방사선 방출)
- 방사성핵종(Radionuclides) : 불안정한 원소의 원자핵이 스스로 붕괴되면서 내부로부터 방사선을 방출하는 원자핵, 238U를 등 약 1700종이 존재
- 방사선(Radiation) : 물질을 투과할 수 있는 광선과 같은 여러 에너지의 전자파로서 α 선, β 선, γ 선 등. 위해성 크기가 외기에서는 γ \rangle β \rangle α 순이나 식품을 통하여 인체에 침투하는 경우 α 선이 큰 피해를 줌

[방사선의 종류]

- X-선 : 병원의 진단이나 치료 목적 투과력이 강함, 인체 영향은 미미
- α -선 : 자연계에 존재하는 방사성물질로부터 방출투과력이 약함, 종이 한장으로 차단
- • β 선 : 방사성물질의 원자핵으로부터 나오는 전자
 투과력이 α 선 보다는 강함. 손바닥 정도 통과, 금속판으로 차단
- ▼ -선 : 방사성물질이 붕괴할 때 방출
 투과력이 강함, 암치료에 이용, 납이나 콘크리트로 차폐

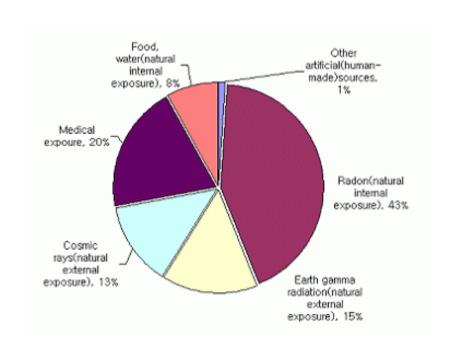
핵관련 업무에 따른 대표 핵종

구 분	핵 종
Reactors	¹³¹ I/ ¹³⁴ Cs+ ¹³⁷ Cs/ ¹⁰³ Ru+ ¹⁰⁶ Ru/ ¹⁴ C/ ³ H/ ³⁵ S
Reprocessing plant	⁹⁰ Sr/ ¹³⁷ Cs/ ²³⁹ Pu+ ²⁴¹ Am/ ¹⁴ C/ ³ H
Waste storage facilities	⁹⁰ Sr/ ¹³⁷ Cs/ ²³⁹ Pu+ ²⁴¹ Am
Weapons	²³⁹ Pu
Space vehicles	²³⁸ Pu

방사능 관련 단위

구 분		새로운단위	종래단위	환 산
방사능 단위 (방사성물질의 양)		베크렐 (Bq)	큐리 Ci	1Ci = 3.7×10^{10Bq} 1Bq = 2.7×10^{-11Ci}
방사선량에	조사선량	쿨롱/킬로그램 (C/kg)	렌트겐 R	1R = 2.58×10 ⁻⁴ C/kg 1C/kg = 3.88×10 ³ R
관한 단위	흡수선량	그레이 (Gy)	라드 rad	1rad = 0.01Gy 1Gy = 100rad
	등가선량 (인체의 영향)	시버트 (Sv)	렘 rem	1rem = 0.01Sv 1Sv = 100rem

방사성물질 노출경로


천연 : 토양, 암석, 공기, 물, 음식,

우주선

인공: 핵폴발 실험, 원전 사고,

핵연료 재처리시설

입자가속기, TV

방사능 오염 식품에 의한 위해 : 만성적 장애

- 탈모, 눈의 자극, 궤양의 암변성, 세포분열 억제, 세포기능 장애, 생식불능, 백혈병, 염색체 파고, 유전자 변화, 돌연변이 유발, 면역기능 저하

일상생활 속의 방사선량

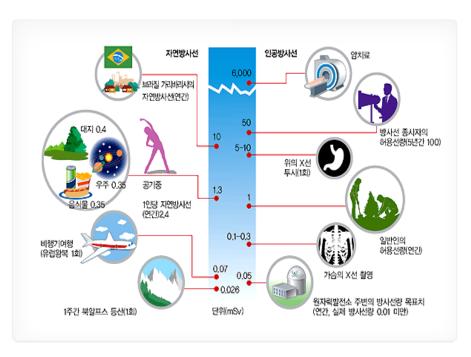


표 : 주요 방사성 핵종과 그 표적 조직

핵 종	방사선	물리학적 반감기	유효반감기(일)*	표적조직
⁹⁰ Sr	β	29년	6,400	BB
⁸⁹ Sr	β	50일	50.3	Ш
¹³⁷ Cs	β	30년	70	연골, 내장
¹⁴ C	β	5,730년	12	지방, 전신
131 I	Β, γ	8.1일	7.6	갑상선
³ H	β	12.4년	12	전신

- * 유효반감기: 생체 내에서의 방사성동위원소의 반감기 생물학적 반감기×물리적 반감기/생물학적 반감기+물리적 반감기
- ※ KI는 요오드 동위원소의 방사선으로 인한 갑상선의 보호에만 효과

식품의 방사능 기준

-우리나라

핵 종	대상식품	기준(Bq/kg, I)
131 _T	유 및 유가공품	150
1011	기타식품	300
¹³⁴ Cs + ¹³⁷ Cs	모든 식품	370

-미국 FDA(총 식이중)

Radionuclide Group	Level (Bq/kg)
⁹⁰ Sr	160
131 _I	170
¹³⁴ Cs + ¹³⁷ Cs,	1200
²³⁸ Pu + ²³⁹ Pu + ²⁴¹ Am	2
¹⁰³ Ru + ¹⁰⁶ Ru	<1

3-MCPD(3-monochloropropane-1,2-diol)

[생성 원인]

- 유지성분을 함유한 단백질을 염산용액으로 산분해하는 과정에서 얻어지는 부산물
- MCPD는 산분해식물성 단백질로 만드는 간장, 스프, 소스류 등의 제조과정에 생성

3-MCPD

[독성 및 인체영향]

- 실험동물에 불임유발 보고
- 인체독성은 잘 알려져 있지 않음
- WHO: 바람직하지 않은 물질

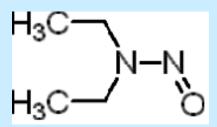
[규제 및 관리]

- 우리나라
 - 산분해간장, 혼합간장: 0.3mg/kg이하
 - 식물성단백가수분해물(HVP): 1.0mg/kg이하
- EU: HVP 0.02mg/kg이하
- 미국: HVP 0.1mg/kg이하

3-MCPD

표: 간장의 3-MCPD 모니터링 결과(2006년, KFDA)

식품류	품목별	검사 건수	불검출 (건수)	검출 (건수)	판정	검출수준 (ppm)	평균 (ppm)	생산국
		19	16	3	적합	0.002~0.06	0.04	국내
	혼합 간장	1	1	-		-	-	일본
		1	1	-		-	-	중국
	양조 간장	38	35	3	적합	0.04~0.11	0.07	국내
간장류	118 118	9	6	3	적합	0.05~0.06	0.05	일본
	한식 간장	15	13	2	적합	0.02~0.09	0.06	국내
	효소 간장	2	_	2	적합	0.05	0.05	국내
	기타 (진간장)	11	11	-	적합	-	-	



니트로사민(N-nitrosamine)

[생성 원인 및 주요 오염원]

- 제2급 아민과 아질산이 산성조건에서 반응하여 생성
- 전구물질을 섭취할 경우 위장 내에서 생성 가능성
- 주요 오염식품 : 식육 및 어육제품, 우유 및 유제품, 맥주 등
- 식육제품에 아질산염을 발색제로 사용시 생성 가능성

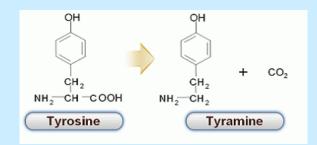
[NDMA 구조]

니트로사민(N-nitrosamine)

[독성 및 인체영향]

- 간암을 유발
- neurosea(신경증상), 구토, 설사, 심한 복부통증 유발
- ※ 비타민 C는 질산염이 아질산염으로 전환되는 것 저해


[규제 및 관리]


- 우리나라
 - 전구물질인 아질산염(발색제) 규제 식육제품: 70ppm 이하, 어육제품: 50ppm 이하
- 중국: 유아용젖꼭지 니트로사민 10ppb 이하

[생성 원인 및 주요 오염식품]

- 원 재료의 효소작용과 미생물에 의한 아미노산의 탈탄산 작용 등에 의해 생성
- Polyamine은 부패의 지표물질로 이용
- 주요 바이오제닉 아민 : Putrescine, Histamine, Tyramine, Spermidine
- 어류제품, 육류제품, 낙농제품, 포도주, 채소, 과일

[바이오제닉 아민 생성 기전]

[인체영향]

- Putrescine: 저혈압, 맥박저하, 팔다리 마비,
- Histamine : 꽁치, 정어리 부패시 scombrotoxicosis'가 유발 식품단백질 알러지와 유사한 증상(발진, 국소적인 피부염증, 구토, 오심, 설사, 심한 복통, 저혈압, 두통, 울렁거림, 심한 호흡곤란)
- Tyramine, tryptamine, β-phenylethylamine : 심혈관계에 작용하며 'vasoactive amine'로 분류
 - Tyramine은 혈관수축과 심박활동을 증가시켜 혈압상승

표: 히스타민의 기준 및 규격

국 명	관련식푼	관리기준(권장규격) mg/kg	비고
미국	가다랑어 및 참치통조림	<500	HCCP관리 기준
EU	고등어, 청어, 멸치, 민새기과	100~200	
호주,뉴질랜드	어류 및 가공어육	<200	
CODEX	어류 및 가공어육	<100	

[저감화 방안]

- 젓갈류 및 장류 제조 시 Glycine을 첨가할 경우 최대 65% 이하
- 발효온도(40° ⇒30°) 및 저장온도(37° ⇒4°)를 낮춤
- 원료와 제조공정을 청결하게 유지하여 부패미생물 오염을 차단
- pH를 4.5이하로 조절함하여 탈탄산효소 활성을 억제
- pH, 온도 및 소금 농도 조절로 미생물 성장을 조절하여 치즈 등에서 바이오제닉아민 생성량을 효과적으로 제어
- 감마선 조사로 발효초기 부패미생물을 효과적으로 조절하여 발효, 숙성 중 바이오제닉아민 생성을 억제

벤젠(Benzene)

[생성 원인 및 주요 오염식품]

- 벤젠은 방향족화합물 생산에 주원료로 사용되는 물질로 대부분 합성
- 발생원: 화산활동, 산불, 원유, 자동차 배기가스
- 식품 중 비타민 C가 미량의 철, 구리 함께 존재 시 산화되고 안식향산의 구조를 변화시켜 벤젠 생성
- 안식향산을 첨가물로 사용한 음료에 미량 생성

[벤젠의 구조]

벤젠(Benzene)

[독성 및 인체영향]

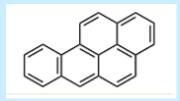
- IARC(국제암연구소) 발암물질 Group 1로 분류
- 산업장 근로자에게 백혈병 발생원인
- 동물실험: 적혈구용적율, 헤모글로빈, 적혈구, 백혈구, 혈소판 수치 감소

[규제 및 관리]

국 가 명	음용수의 벤젠관리기준
WHO, CODEX, 일본, 호주, 한국	10ppb
미국, 캐나다	5ppb
유럽	1ppb

벤젠(Benzene)

표: 식품의 벤젠 함량 조사 결과(2006년, KFDA)


품 목	분석건수	검출수	검출범위 (ppb)	평균 (ppb)
과실채소류음료	8	3	N.D ~ 14.12	3.49
탄산음료류	11	5	N.D ~ 13.17	2.10
추출차	4	0	N.D	N.D∗
인삼음료	1	1	12.75	12.75
홍삼음료	14	12	N.D ~ 30.58	8.66
기타음료-음료베이스	4	0	N.D	N.D
기타음료-추출음료	7	5	N.D ~ 15.92	6.74
기타음료-혼합음료	56	35	N.D ~ 51.54	7.61

벤조피렌(Benzo[a]pyrene)

[생성 원인 및 주요 오염식품]

- 조리 시 직화하거나 고열처리(300~600℃) 시 생성
- 굽기, 튀기기, 볶기 등의 조리나 가공 중에 생성
- 식물성 기름 등에 존재하는 벤조피렌은 착유하기 위해 가열처리 과정에서 생성
- 식품의 조리.가공시 단백질, 탄수화물, 지질의 분해에 의해 생성
- 주요 오염식품은 구운 고기, 식용유지, 환경오염에 의한 해산물,어패류

[벤조피렌의 구조]

벤조피렌(Benzo[a]pyrene)

[독성 및 인체영향]

- 발암물질(IARC 발암물질 Group 1)
- 피부암 유발
- 내분비계장애물질(환경호르몬)

[규제 및 관리]

■ 우리나라: 식용유지 2ppb이하

■ EU : Oils & fats 2ppb이하

※ 탄 음식 섭취를 피할 것

아크릴아마이드(Acrylamice)

[생성 원인 및 주요 오염식품]

- 수처리제인 폴리아크릴아마이드 제조에 사용되는 물질
- 접착제, 종이, 화장품 등 제조시 사용
- 감자나 시리얼 같은 탄수화물이 풍부한 식품을 고온조리 했을 때 아스파라긴산과 당의 화학적 반응에 의해 생성(메일라드 반응)
- 후렌치 후라이, 포테이토칩, 크래커, 스낵, 비스킷 등에서 검출

아크릴아마이드(Acrylamice)

[독성 및 인체영향]

- 발암물질(IARC 발암물질 Group 2A)
- 피부자극, 중추 및 말초 신경 장애

[규제 및 관리]

- 우리나라 물론 외국도 기준은 없음
- 저감화를 위한 연구 수행
- WHO 먹는물 수질 기준: 0.5ug/L
- ※ 고온조리를 피할 것

아크릴아마이드(Acrylamice)

표: 식품별 아크릴아마이드 함량 모니터링 결과(2004, KFDA)

식품군	검출량(ppb)	식품군	검출량(ppb)
원료식품류	ND-17	크래커.스낵.비스킷류	13-459
밥류	ND-14	시리얼류	10-236
떡류	ND-10	차 및 음료류	ND-24
빵류	10-33	커피류	394-1,026
유탕 면류	ND-27	초콜릿류	13-30
영유아식류	ND-15	사탕류와 캐러멜류	ND-34
후렌치 후라이	141-1,118	통조림류	ND-20
뻥튀기, 건빵류 등	15-587	마가린 및 유제품류	ND-<10
단백질 식품류	ND-10	장류	ND-60
포테이토칩. 포테이토 스낵류	278-3,277	소스류	ND-51

에틸카바메이트(Ethyl carbamate)

[생성 원인 및 주요 오염식품]

- 포도주 등의 발효과정에서 자연적으로 생성되는 요소(urea) 등의 물질이 에탄올과 반응하여 생성
- 알코올성 음료(포도주, 청주, 위스키), 요구르트 치즈, 김치, 간장 등

에틸카바메이트(Ethyl carbamate)

[독성 및 인체영향]

- 발암 가능물질 (IARC Group 2A)
- 구토, 의식불명, 출혈, 신장과 간에 손상

[각국의 기준]

- 캐나다
 - table wine 30ppb 이하 -desert wine 100ppb 이하
 - distilled spirt 150ppb 이하 -sake 200ppb 이하
 - fruit brandies 400ppb 이하
- 미국[자율규제]
 - Whisky 125ppb table wine 15ppb desert wine 60ppb

에틸카바메이트(Ethyl carbamate)

표: 주류의 에틸카바메이트 함량 조사(2005, KFDA)

구분	Sample name	EC content (ppb)	구분	Sample name	EC content (ppb)	구분	Sample name	EC content (ppb)
	Α	3.65		Α	0.63		A	0.54
	В	10.07		В	0.93		В	0.51
	С	1.70		С	0.60		С	0.61
소주	D	2.55	탁주	D	0.54	맥주	D	0.77
	E	0.83		E	0.54		E	0.45
	F	1.28		F	0.40		F	0.50
	G	0.91		G	0.50			

프탈레이트류(Phthalates)

[생성 원인 및 주요 오염식품]

- 프탈레이트는 PVC(polyvinyl chloride) 등 플라스틱의 유연성을 주기 위한 가소제로 합성되는 물질
- 의료용품, 장난감, 각종 식품 포장재, 잉크,생활용품 등 다양한 플라스틱 소재에 첨가제로 사용
- Dibutyl phthalate(DBP), Dipentyl phthalate (DPP), Butylbenzyl phthalate(BBP), Di(2-ethylhexyl) phthalate(DEHP) 등
- 식품 포장재를 통한 식품에 이행 가능성

프탈레이트류(Phthalates)

[독성 및 인체영향]

- 내분비계장애물질
- 발암물질(IARC 발암물질 Group 2B)
- 정소위축, 정자수 감소

[우리나라의 관리현황]

- FDA: 기구용기포장에 DHEA: 사용금지

- 환경부: DHP, BBP, DPrP, BP, DCHP, DPP, DEP

내분비계장애물질로 규정

퓨란(Furan)

[생성 원인 및 주요 오염식품]

- 가정에서 조리과정이나 식품 제조.가공 중 가열처리시 자연스럽게 생성
- 아미노산, 탄수화물을 가열하거나 비타민, 다중불포화지방산 등의 성분이 가열분해되었을 때 또는 메일라드 반응의 중간 생성물로서 식품 중에 생성
- 커피, 빵, 육류통조림, 조리한 닭고기, 카라멜 등에서 검출

퓨란(Furan)

[독성 및 인체영향]

■ 발암물질(IARC 발암물질 Group 2B)

▶ 국제암연구소(IARC)의 발암성 분류

- Group 1 : 인체발암물질

- Group 2A : 인체발암가능성이 높은 물질

- Group 2B : 인체발암가능성이 있는 물질

- Group 3 : 인체발암물질로서 분류할 수 없는 물질

[관리 및 규제]

■ 규제하는 나라는 없음

퓨란(Furan)

표: 식품 중 퓨란 함량 조사 결과(KFDA)

	구 분	시료 수	범위(ppb)			평균(ppb)		
유아식품	분유	47	N.D	~	20.7	3.6	<u>±</u>	5.06
(107)	이유식	40	2.1	~	147.7	21.03	<u>+</u>	24.85
	유아음료	20	t	~	21.0	5.47	<u>+</u>	5.68
	과일	5	t	~	3.5	2.4	<u>±</u>	1.64
	곡류 두류	10	t	~	22.8	5.61	<u>+</u>	7.20
통조림 식품	채소류	5	t	~	25.0	6.24	<u>+</u>	10.55
(50)	육류	10	N.D	~	44.5	14.09	<u>±</u>	11.98
	참치	10	3.23	~	76.9	25.20	<u>+</u>	24.54
	기타 수산물	10	t	~	199.5	59.17	<u>±</u>	70.75
커피류	인스턴트커피	11	22.6	~	224.5	90.06	±	67.13
(21)	원두커피	10	267.1	~	2552.7	814.1	±	648.96

포르말린(Formalin)

[생성 원인 및 용도]

- 포름알데히드 35~37%와 중합방지를 위해 8~12%의 에탄올을 첨가한 물에 녹아 있는 혼합물질
- 포름알데히드(HCHO)는 탄소가 포함된 물질의 불완전 연소와 산불, 담배연기, 자동차 매연에서 발생
- 과일, 채소, 육류 등 천연 식품에서도 대사과정에서 부산물로 미량 생성
- 살균방부제로 이용되고 피혁제조, 사진건판, 폭약 등을 만들 때 사용
- 요소계, 멜라민계 합성수지제 만드는 공정에 사용
- 건축자재에 함유된 포름알데히드는 새집증후군 유발

포르말린(Formalin)

[독성 및 인체영향]

- 내분비계장애물질
- 발암물질(IARC 발암물질 Group 1)
- 중추신경 억제, 신장장해, 정서 불안정, 기억력 상실

표: 포름알데히드 농도별 인체에 대한 자극정도

농 도(ppm)	자 극 부 위	자 극 정 도
0.25이하	눈, 코, 호흡기도	매우 약한 자극
0.25~0.50	눈, 코, 호흡기도	약한 자극
0.50~1.50	눈, 코, 호흡기도	중간 자극
1.50~3.00	눈, 코, 호흡기도	강한 자극
10이상	눈, 코, 호흡기도	눈물흘림, 호흡곤란, 기침

포르말린(Formalin)

표: 식품 중에 천연적으로 존재하는 포르말린 함량

식 품 종 류	포르말린 함량(ppm)
갑각류	1~98
냉동대구	20
무	3.7
토마토	5.7
표고버섯	100~300

■ 기구 및 용기․포장의 기준․규격: 따른 페놀수지(PF), 멜라민수지(MF), 요소수지(UF), 폴리아세탈, 고무제, 종이제 또는 가공지제, 금속관, 전분 제의 포름알데히드의 용출규격: 4.0mg/L 이하

정부의 신종유해물질 관리

- 식품에 대한 모니터링
- 노출량 평가
- 안전성 평가

- 산업계에 저감화 유도
- 위해수준 이상이면 규제
- 가정에는 조리식품에 대한 홍보